

. – 🗨

L for HP Shapes						
R			8	Construction	L_p	R
						R.
4-2		. 🛛 . 🖥		L_p \mathbb{Z}		N
•, <u>2</u>	A ?	•	•	•		A

 L_p values listed in the AISC *Manual* for shapes with noncompact flanges are adjusted to account for the noncompactness. If the shape has noncompact flanges, as many HP shapes do, then the value listed in Table 4-2 is L_p' as shown in AISC *Manual* Figure 3-1. The notes for AISC *Manual* Table 3-2 describe the use of L_p' with M_p' and BF to quickly arrive at beam flexural strengths when $L_p' \ L_b \ L_r$. *Brad Davis, S.E., Ph.D.*

PJP Groove Weld Callout

No, that is not correct. If all you show on drawings is a dimension, it is very likely that a detailer will transfer that dimension to shop e40Sshop and it akeon p epith f

dimensiot. Depeindng()-10(ion)-the eldng()-10(positsio,)451()]TJ0 Tc0-1.333 TD p rocess and ee an co arcao i that teyt not the ele that is qured(.)71()TJ0 Tc0-1.333 TDIs m eerce s arcao we oee a e

e40Sshop that dimension and nd

-25 tr - 01 hr - 01 er - 01 sr - 01 er - 01 (-44 (c 110 (r - 01 sr - 01 er - 01 sr - 01,) 471 (-25 wr - 01 er - 01 (-51 sr - 01 ur - 01 br - 01 tr -